• IIANews微官网
    扫描二维码 进入微官网
    IIANews微信
    扫描二维码 关注微信
    移动客户端
  • English
机器视觉

欧姆龙丨拒绝机械化检测!人类的经验判断,如今AI也能做到

  2020年08月07日  

  我们都知道,目前视觉检测技术在工业领域的应用已经非常成熟,但是否代表着可以完完全全替代人眼了呢?答案是否定的。因为在部分的产品外观检测中,依然需要熟练技术人员的感性和经验来判断,例如判断各种颜色和尺寸的划痕、产品本身有很大差异时如何判定缺陷产品等。

  在如今熟练技术人员短缺和人工成本急剧上升的背景下,要全部依赖人工来做判断,明显是不现实的,因此各大自动化厂商纷纷加入了AI检测的研究中,但要使其投入实际应用,必须准备大量的图像数据供AI学习,还有AI工程师的保障、需要在现场安装特殊的AI硬件等课题,导致至今都未能成功将AI真正地引入生产现场。

  欧姆龙敢于“先人一步”,率先将这项突破性的技术,搭载于自己的图像处理系统中,并使其运用于实际的生产过程,让我们共同目睹一下,究竟AI检测,是否能够再现人类的经验判断吧~

-- 应用效果实测 --

金属冲压零件的划痕检测

  以金属冲压零件的划痕检测为例,例如我们拍摄到的图像为下图所示。

  以往,需通过指定工件表面的颜色信息,或需要检出的划痕尺寸来对划痕做出定义。但在有大量背景干扰的情况下,对于划痕的定义是非常困难的,经常会出现将刻印误判为划痕的案例。

-- 无法区分划痕或干扰--

  欧姆龙搭载AI的图像处理系统,能够自动抽取出被推测为划痕的部位,不通过颜色、亮度来定义,而是利用AI来抽取划痕本身,使得稳定检测变为可能,不再依赖于熟练技术人员的经验判断。

神奇的

AI划痕抽取过滤

  欧姆龙的图像处理过滤器,预先学习了“人感觉是划痕的图像特征”。即使没有定义划痕,例如用传统方法很难自动化检测的“不可预测的尺寸、形状、颜色”等,AI也能判断并抽取划痕的特征。

  学习数据包括欧姆龙迄今为止积累的图像,可以检测不确定背景中的缺陷,例如加工面上的缺陷,这是传统方法难以实现的。

  在实际生产现场,最令人头疼的,就是明明有划痕等产品缺陷,却被图像处理系统漏判,认定是良品。

  明明没有划痕等缺陷,却被图像处理系统将刻印误判为划痕,认定不良品。

  如此不仅增加了不良品的流出几率,而且最终仍然要回归至人工检测,材料浪费与人员作业工时双重的成本叠加,是任何一家生产厂商都无法承受的。

无需定义和学习,可自动检测各种划痕

  通过AI技术,摆脱了对于人类“感性和经验”的依赖,实实在在为生产现场带去价值,目前包括金属冲压零件的划痕检测在内,我们还在各行业的多工艺中进行了实测,效果显著!

  一、磨砂(喷砂)金属表面刮擦

  二、树脂类制品表面划痕

  三、拉丝面上的暗色划痕

  四、拉丝面上/存在阴影的浅色划痕

  可以稳定地抽取以上各种材质、颜色和尺寸的划痕(以前需要先定义划痕),且无需进行调整。如果您已经心动了,赶紧向联络当地的事务所,自己亲自来感受下吧~

标签:欧姆龙我要反馈
最新视频
这台西门子Unified精智面板为何被称为“边缘智能HMI”?   
【2020工博会系列采访】施迈赛工业开关制造(上海)有限公司总经理-Bellondi Alberto   
福禄克
施耐德电气大学
魏德米勒
专题报道
2020全景工博会
2020全景工博会 9月19日,第二十二届中国国际工业博览会在国家会展中心(上海)圆满落幕。本届工博会为期5天,共设9大专业展,吸引了来自全球22个国家和地区的2238家参展商,其中境外及外商投资企业约占20%。展览面积达24.5万平方米,近500项新技术新产品首展首发。本届工博会到场专业观众较上届增长4.3%。
企业通讯
TI 电源管理及半导体热门产品推荐
TI 电源管理及半导体热门产品推荐

TI 电源管理及半导体热门产品推荐。

安全、灵活实现内部物流,赋能快速消品行业提升自动化能力
安全、灵活实现内部物流,赋能快速消品行业提升自动化能力

消费者的需求和购物模式千变万化,这让生产过程充满复杂性。快速消费品行业需要提高自动化程度,来应对复杂性和控制成本。9月2

在线会议

社区

免费送彩金40棋牌游戏 送彩金论坛 澳客彩票 送彩金棋牌10可提现 hg平台送彩金 哪些娱乐网站送彩金 白菜送彩金38网站大全 申请免费自动送彩金 永利高网上注册送彩金 飞鸟公众号系统